155

AD-A230

TECHNICAL REPORT BRL-TR-3173

BRL

Ar⁺ LASER EXCITED FLUORESCENCE OF DIATOMIC COMBUSTION RADICALS IN A FLAME

JOHN A. VANDERHOFF M. WARFIELD TEAGUE

NOVEMBER 1990

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

90 7 26 067

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public resorting burden for this collection of information is estimated to average 1 hour ser reasons, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other assect of this collection of information, including suggestions for reducing this burden, to Washington Hashington, University of Internation Operations and Research, 1215 Jefferson Devis Highway, Surfe 1204, Arington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (9704-4180), Washington, DC 29503.

1. AGENCY USE ONLY (Leave blank)			D DATES COVERED August 1990
A. TITLE AND SUBTITLE Ar + LASER EXCITED FLUORE	SCENCE OF DIATOMIC		S. FUNDING NUMBERS
COMBUSTION RADICALS IN A			1L161102AH43
6. AUTHOR(S)	**************************************		
John A. Vanderhoff M. Warfield Teague			
7. PERFORMING ORGANIZATION NAM	IE(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING / MONITORING AGEN)	10. SPONSORING/MONITORING AGENCY REPORT NUMBER
Ballistic Research Labor ATTN: SLCBR-DD-T Aberdeen Proving Ground,			BRL-TR-3173
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION / AVAILABILITY ST.	ATEMENT		12b. DISTRIBUTION CODE
Approved for public reledistribution unlimited	ease;		
13. ABSTRACT (Maximum 200 words)			
The uv prism selected 1: diatomic combustion radifor CN, NH, and OH using	icals in a flame. F	luorescence excit	igated for excitation of ation has been observed 02.4 nm, respectively.
14. SUBJECT TERMS Ion Laser, Combustion, Diatomics, Flames	Fluorescence, Gas Ph	ase,	15. NUMBER OF PAGES 17 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. OF REPORT	SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFIC OF ABSTRACT	ATION 20. LIMITATION OF ABSTRACT
Unclassified U	nclassified	Unclassified	UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 298-102

TABLE OF CONTENTS

		PAGE	
	LIST OF FIGURES	v	
	ACKNOWLEDGEMENT	. vii	
I.	INTRODUCTION	1	
II.	EXPERIMENT	1	
Ш.	RESULTS	2	
IV.	CONCLUDING REMARKS	5	
	REFERENCES	7	
	DISTRIBUTION LIST	9	

	Bv	
	Distr	ibution/
	Avai	lability Code
a. /		Avail and/or
TO THE PARTY OF TH	Dist	Special
	1	

Accession For NTIS GRAAI DTIC TAB Unannounced Justification_

INTENTIONALLY LEFT BLANK

iv

LIST OF FIGURES

FIGUR	<u>Page</u>
1	Experimental Setup Showing the Sample Placed at the Intracavity Focus of the Laser
2	Experimental Setup Showing the Sample Placed at an Extracavity Focus of the Laser
3	Fluorescence of CN from a CH ₄ /N ₂ O Flame
4	Emission and Fluorescence of CN in a CH ₄ /N ₂ O Flame, Expanded Scale 2
5	Fluorescence and Emission of NH in a CH ₄ /N ₂ O Flame 4
6	Fluorescence and Emission of OH from a CH ₄ /N ₂ O Flame

Intentionally Left Blank

ACKNOWLEDEMENTS

We thank Dr. A.J. Kotlar for the program calculations to determine some of the fluorescence excitation transitions and Dr. W.R. Anderson for a critical reading of the manuscript. INTENTIONALLY LEFT BLANK

I. INTRODUCTION

At various times over the past ten years we have encountered laser excited fluorescences during the course of performing spontaneous Raman spectroscopy on atmospheric pressure premixed flames. These fluorescences come from accidental coincidences of ro-vibrational electronic transitions with prism-selected lasing lines of Ar⁺ or Kr⁺ ion lasers. At the elevated temperatures of a flame the combustion radicals have many more populated states than at room temperature, increasing the chance for a coincidence with a laser line. The combustion diatomic radicals that have been excited in this manner in a CH₄/N₂O premixed flame are CN^{1,2}, OH³, NH³ and C₂^{2,4-6}. Recently, ion laser technology has been improved to allow higher power ultraviolet lasing to be commercially available. We report here a further investigation of coincidental fluorescence excitation of combustion diatomics from ultraviolet lines of an Ar⁺ ion laser.

II. EXPERIMENT

Two different experimental arrangements were used in this study due to the limitation of available focusing optics. Fig. 1 illustrates the previously used intracavity arrangement. The excitation source is a Coherent Innova 200 - 25/7 argon ion laser which

Figure 1. Experimental setup showing the sample placed at the intracavity focus of the laser.

Figure 2. Experimental setup showing the sample placed at an extracavity focus of the laser.

is operated in an intracavity mode. That is, the output coupler is removed from its normal position in the laser frame and the lasing cavity is extended (focusing provided) with two concave mirrors having radii of curvature of 100 and 30 cm. Depending on the amount of absorption of the sample and the lasing line the intracavity lasing power can be more than two orders of magnitude larger than the extracavity power. These intracavity mirrors, however, are not highly reflective below 350 nm; thus for those laser lines the experimental arrangement for the excitation source is shown in Fig. 2. The laser output coupler is now in the normal position and the output laser radiation is focused and recollimated with 20 cm focal length convex lenses. A flat mirror returns the radiation through the same path effectively doubling the amount of radiation in the sampling region.

Raman and fluorescence signals are gathered at right angles to the direction of the excitation source for both arrangements shown in Figs. 1 and 2. An fl 10 cm focal length quartz convex lens is the collection optic and an f2 20 cm focal length quartz convex lens is used to interface the collection optic to the 0.25 m Jarrell-Ash spectrometer. These opt as magnify the sample region by a factor of two which fills the 0.1 mm entrance slit. Spectra are detected and ecorded with an EG&G Princeton Applied Research Model 1456 intensified photodide array which is coupled to the spectrometer. This detection system captures spectra of differing wavelength range depending on the order and line spacing of the grating used in the spectrometer. As an example a 1200 groove/mm grating operating in first order will simultaneously disperse a wavelength increment of about 40 nm over the approximately 700 intensified pixels of the photodiode array. A premixed laminar CH₄/N₂O flame is used for the source of hot combustion radical species. The N₂O oxidizer facilitates the production of radical species which contain single C and/or N atoms (e.g. CN). This flame is supported on a small multi-hole metal burner head of 0.4 cm diameter. Although the flow conditions were not well regulated the flame composition was lean with a flame temperature around 2400 K (as determined by absorption spectroscopy).

III. RESULTS

There are twelve commercially advertised uv lasing lines of the Ar⁺ laser used in this study; all except two (385.8 and 308nm) were made to lase. It is unclear why these two lines did not lase; perhaps there were problems with mirror coatings. However, an unadvertised Ar⁺ line at 379.5 nm was found to lase. Bridges and Chester⁷ have previously

Figure 3. Fluorescence of CN from a CH_4/N_2O flame. The $\Delta v=0,1$ CN transitions and the laser line can be readily observed.

Figure 4. Emission and fluorescence of CN in a CH_4/N_2O flame, expanded scale. Only the $\Delta v=0$ sequence can be observed at this resolution.

Table 1. Ar⁺ laser pumped fluorescence excitation of selected diatomic combustion radicals.

Di 	screte Ar ⁺ Laser Lines (nm)	Species	Excitation Transition
	528.7	•	•
	514.5	C_2	$d^3\pi_g$ - $a^3\pi_u$ (0,0) R ₂ (10) + Q ₁ (20)
	501.7	C_2	${ m d}^3\pi_{ m g}$ - ${ m a}^3\pi_{ m u}$ (1,1) ${ m R}_2$ (46) and (0,0) ${ m R}_2$ (54)
	496.3	-	•
	488.0	-	-
	476.5	-	-
	472.7	$\mathtt{C_2}$	$d^3\pi_g - a^3\pi_u (1.0)R_1(5)$
	465.8	C_2	$d^3\pi_g$ - $a^3\pi_u$ (2,1) R ₂ (34) + R ₃ (34)
	454.5	CN	$B^2\Sigma^+ - X^2\Sigma^+$ (1,3) $R_1(20) + R_2(20)$
**	379.5	CN	$B^2\Sigma^+ - X^2\Sigma^+ (2,2)$
**	363.8	-	-
**	351.4	-	-
**	351.1	-	-
**	335.8	NH	$A^3\pi - X^3\Sigma$ (0,0)
**	334.5	- ,	-
**	333.6	-	-
**	305.5	-	-
**	302.4	ОН	$A^2\Sigma - X^2\pi $ (0,0) $S_{21}(12)$
**	300.2	-	•
**	275.4	-	•

^{*} Rotational transitions are given in terms of the ground state rotational quantum number N"

made this line lase in a pulsed dc discharge of argon. It was found that this line excites CN; the fluorescence excitation spectra are shown in Figs. 3 and 4 and described in Table 1. Note that all of the fluorescence excitation spectra presented here have the flame

^{**} Present work

emission contribution subtracted; and when there are two spectra on the same graph the vertical axis for the dashed line is on the right. Table 1 contains the laser lines, the combustion diatomic species excited and the excitation transition. Fluorescence excitation of CN together with the laser excitation line are clearly seen on Fig. 3. The wavelength coverage is sufficient to show both the $\Delta v = 0$ and 1 transitions for CN. The grating in the monochromator was changed from 1200 to 2400 grooves/mm for the spectrum shown in Fig. 4 and the $\Delta v = 0$ region for CN is shown with better detail. The solid line represents only the CN flame emission whereas the dotted line represents only the laser excited fluorescence from CN. It can be clearly seen that the predominant P-branch fluorescence peaks for $\Delta v=0$ and 1 occurs in the (2,2) and (2,1) bandheads of CN, respectively. The R-branch excitation can be observed for the $\Delta v = 1$ sequence but is hidden under the laser line in the $\Delta v=0$ sequence. It is clear that the primary fluorescence is coming from the v'=2 (excited electronic) state. The energy of the laser line (379.5 nm) suggests that some rotational line in v''=2 (ground electronic) state is being pumped. A program⁸ which generates CN spectra from spectral constants indicates that the laser excitation line pumps the $B^2\Sigma - X^2\Sigma$ (2.2) N = 55 transition of CN. These results are not consistent. That is, although the calculation gives an R-branch transition within experimental error of the laser line, it gives a wavelength for the corresponding P-branch transition which should be resolvable from the P-bandhead; and this is not experimentally observed. Consequently, the rotational level being pumped has not been assigned. One explanation for the failure to determine the proper rotational quantum number is that the spectral constants used in the generation of CN line positions cannot be reliably extrapolated to such high N values.

Figure 5. Fluorescence and emission of NH in a CH_4/N_2O flame.

CH₄/N₂O flame.

The 335.8 nm Ar + laser line is very close to the $A^3\pi$ - $X^3\Sigma$ (0,0) bandhead of NH and thus it is not surprising that this line pumps NH. Computer generated NH spectra⁸ indicate that there are 16 transitions within 0.05 nm of this laser line. These are transitions where the value of N ranges from 1 - 8. The NH emission from the flame is shown as a solid line on Fig. 5 and the (0,0) and (1,1) vibrational bandheads are labelled. The laser induced fluorescence and laser line are shown as the dashed line. The peak shifted slightly to the blue of the (0,0) emission bandhead contains contributions from both fluorescence and the laser line. No fluorescence was observed for NH in the CH₄/N₂O flame when using either the 334.5 or the 333.6 nm laser lines. These

esults are tabulated in Table 1.

There are three prominent Ar⁺ uv laser lines around 300 nm which we made lase simultaneously with properly coated mirrors. We could not, however, obtain prism selected single line lasing. Thus, for the OH fluorescence results, the excitation line is

inferred from the prominent fluorescence lines. Both OH flame emission and laser induced fluorescence can be seen in Fig. 6 where again the emission is a solid line and the fluorescence a dashed line. The wavelength range included in Fig. 6 shows only one of the laser lines, which is at 305.5 nm. The other two laser lines are at 300.25 and 302.40 nm. The line that appears to pump OH is the 302.40 line which matches closely with the $S_{21}(12)$ transition. This transition wavelength is given as 302.399 nm by Dieke and Crosswhite⁸. Excitation here produce fluorescence in the $R_2(13)$, $Q_2(14)$ and the $P_2(15)$ lines which occur at 306.97, 311.68 and 316.96 nm, respectively9. The locations of these lines coincide very well with the observed fluorescence emission

Figure 6. Fluorescence and emission of OH from a CH_d/N₂O flame.

peaks which are shown by the dashed line in Fig. 6.

Twelve out of the twenty lines listed in Table 1 produced no noticable excitation of the hot combustion diatomics (C₂, CN, CH, OH and NH). None of the Ar⁺ laser lines excited CH. It should again be mentioned that for the Ar⁺ uv laser lines below 350 nm the experiment was conducted extracavity. This arrangement produces low laser power which results in weaker fluorescence signals.

IV. CONCLUDING REMARKS

When comparing fluorescence excitation sources, prism selected lines of ion lasers are much simpler to use than various forms of tunable dye lasers. With this in mind, two situations are envisioned in which incorporating ion laser excitation as described in this paper would be the preferred choice:(a) experiments where the most important criterion is to track a species by its fluorescence signature irrespective of what transition or transitions are pumped and (b) experiments where the coincidentally pumped transition is of importance in the study.

This technique has been previously used to detect CN¹ in a propellant flame burning in room air and we have used the 379.5 nm laser line in attempts to spatially profile CN in a propellant flame burning at 1.5 MPa nitrogen pressure. Thus far a clean well-defined fluorescence signal has not been seen and changes such as lowering the pressure and/or incorporating optics up for intracavity lasing may be necessary.

This technique is not limited to diatomic species. For larger species the number of transitions dramatically increases, and for two triatomics, NCO^{10} and NH_2^{11} there have been coincidental excitations reported for Ar^+ prism selected lines.

INTENTIONALLY LEFT BLANK

REFERENCES

- 1. Vanderhoff, J. A., Beyer, R. A., Kotlar, A. J. and Anderson, W. R.: "Kr⁺ and Ar⁺ Laser-Excited Fluorescence of CN in a Flame", <u>Applied Optics</u>, Vol. 22, p. 1976, 1983.
- Vanderhoff, J. A., Beyer, R. A., Kotlar, A. J. and Anderson, W. R.: "Ar+ Laser-Excited Fluorescence of C₂ and CN Produced in a Flame", <u>Combustion & Flame</u>, Vol. 49, p. 197, 1983.
- 3. Vanderhoff, J. A., Anderson, W. R., Kotlar, A. J. and Beyer, R. A.: "Raman and Fluorescence Spectroscopy in a Methane-Nitrous Oxide Laminar Flame", 20th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, p. 1299, 1984.
- 4. Hendra, P. J., Vear, C. J., Moss, R. and MacFarlane, J. J.: "Raman Scattering and Fluorescent Studies of Flames", in <u>Laser Raman Gas Diagnostics</u>, M. Lapp and C. M. Penny, Eds., Plenum Press, New York and London, p. 153, 1974.
- 5. Jones, D. G. and Mackie, J. C.: "Evaluation of C₂ Resonance Fluorescence as a Technique for Transient Flame Studies, <u>Combustion & Flame</u>, Vol. 27, p. 143, 1976.
- 6. Anderson, W. R., Wong, K. N., Kotlar, A. J. and Vanderhoff, J. A., unpublished results.
- 7. Bridges, W. B. and Chester, A. N.: "Visible and uv Laser Oscillation at 118 Wavelengths in Ionized Neon, Argon, Krypton, Xenon, Oxygen and Other Gases", Applied Optics, Vol. 4, p. 573, 1965.
- 8. Kotlar, A. J.: "Perturbations and Energy Transfer in CN", PhD Thesis, Massachussetts Institute of Technology, 1978.
- 9. Dieke, G. and Crosswhite, H.: "The Ultraviolet Bands of OH: Fundamental Data", <u>I. Quant. Spec. Radiat. Transfer</u>, Vol. 2, p. 97, 1963.
- 10. Anderson, W. R., Vanderhoff, J. A., Kotlar, A. J., DeWilde, M. A., and Beyer, R. A.: "Intracavity Laser Excitation of NCO Fluorescence in an Atmospheric Pressure Flame", J. Chem. Phys., Vol. 77, p. 1677, 1982.
- 11. Bunte, S., Private Communication.

INTENTIONALLY LEFT BLANK

No of No of Copies Organization Copies Organization 2 Director Administrator US Army Aviation Research Defense Technical Info Center ATTN: DTIC-DDA and Technology Activity ATTN: SAVRT-R (Library) Cameron Station Alexandria, VA 22304-6145 M/S 219-3 Ames Research Center Moffett Field, CA 94035-1000 HQDA (SARD-TR) WASH DC 20310-0001 Commander Commander US Army Missile Command 1 US Army Materiel Command ATTN: AMSMI-RD-CS-R (DOC) ATTN: AMCDRA-ST Redstone Arsenal, AL 35898-5010 5001 Eisenhower Avenue Alexandria, VA 22333-0001 Commander US Army Tank-Automotive Command ATTN: AMSTA-TSL (Technical Library) Commander US Army Laboratory Command Warren, MI 48397-5000 ATTN: AMSLC-DL Adelphi, MD 20783-1145 1 Director US Army TRADOC Analysis Command Commander 2 ATTN: ATRC-WSR US Army, ARDEC White Sands Missile Range, NM 8S002-5502 ATTN: SMCAR-IMI-I Picatinny Arsenal, NJ 07806-5000 (Class. only) 1 Commandant US Army Infantry School ATTN: ATSH-CD (Security Mgr.) Commander US Army, ARDEC Fort Benning, GA 31905-5660 ATTN: SMCAR-TDC (Unclass, only) 1 Picatinny Arsenal, NJ 07806-5000 Commandant US Army Infantry School 1 Director ATTN: ATSH-CD-CSO-OR Benet Weapons Laboratory Fort Benning, GA 31905-5660 US Army, ARDEC ATTN: SMCAR-CCB-TL Air Force Armament Laboratory Watervliet, NY 12189-4050 ATTN: AFATL/DLODL Eglin AFB, FL 32542-5000 1 Commander US Army Armament, Munitions Aberdeen Proving G: ad and Chemical Command ATTN: SMCAR-ESP-L Dir, USAMSAA Rock Island, IL 61299-5000 ATTN: AMXSY-D AMXSY-MP, H. Cohen Commander 1 Cdr, USATECOM US Army Aviation Systems Command ATTN: AMSTE-TD ATTN: AMSAV-DACL 3 Cdr, CRDEC, AMCCOM 4300 Goodfellow Blvd. ATTN: SMCCR-RSP-A St. Louis, MO 63120-1798 SMCCR-MU SMCCR-MSI 1 Dir, VLAMO

ATTN: AMSLC-VL-D

No. of

Copies Organization

4 Commander

US Army Research Office

ATTN: R.

R. Ghirardelli

D. Mann

R. Singleton

R. Shaw

P.O. Box 12211

Research Triangle Park, NC

27709-2211

2 Commander

US Army, ARDEC

ATTN: SMCAR-AEE-B, D.S. Downs

SMCAR-AEE, J.A. Lannon

Picatinny Arsenal, NJ 07806-5000

1 Commander

US Army, ARDEC

ATTN: SMCAR-AEE-BR, L. Harris

Picatinny Arsenal, NJ 07806-5000

2 Commander

US Army Missile Command

ATTN:

AMSMI-RK, D.J. Ifshin

W. Wharton

Redstone Arsenal, AL 35898

1 Commander

US Army Missile Command

ATTN: AMSMI-RKA, A.R. Maykut

Redstone Arsenal, AL 35898-5249

1 Office of Naval Research

Department of the Navy

ATTN: R.S. Miller, Code 432

800 N. Quincy Street

Arlington, VA 22217

1 Commander

Naval Air Systems Command

ATTN: J. Ramnarace,

AIR-54111C

Washington, DC 20360

1 Commander

Naval Surface Warfare Center

ATTN: J.L. East, Jr., G-23

Dahlgren, VA 22448-5000

2 Commander

Naval Surface Warfare Center

ATTN: R. Bernecker, R-13

G.B. Wilmot, R-16

Silver Spring, MD 20903-5000

No. of

Copies Organization

5 Commander

Naval Research Laboratory

ATTN: M.C. Lin

....

J. McDonald

E. Oran

J. Shnur

R.J. Doyle, Code 6110

Washington, DC 20375

1 Commanding Officer

Naval Underwater Systems

Center Weapons Dept.

ATTN: R.S. Lazar/Code 36301

Newport, RI 02840

2 Commander

Naval Weapons Center

ATTN: T. Boggs, Code 388

T. Parr, Code 3895

China Lake, CA 93555-6001

1 Superintendent

Naval Postgraduate School

Dept. of Aeronautics

ATTN: D.W. Netzer

Monterey, CA 93940

3 AL/LSCF

ATTN: R. Corley

R. Geisler

J. Levine

Edwards AFB, CA 93523-5000

1 AL/MKPB

ATTN: B. Goshgarian

Edwards AFB, CA 93523-5000

1 AFOSR

ATTN: J.M. Tishkoff

Bolling Air Force Base

Washington, DC 20332

1 OSD/SDIO/IST

ATTN: L. Caveny

Pentagon

Washington, DC 20301-7100

1 Commandant

USAFAS

ATTN: ATSF-TSM-CN

Fort Sill, OK 73503-5600

1 FJ. Seiler

ATTN: S.A. Shackleford

USAF Academy, CO 80840-6528

No. of Copies

Organization

- University of Dayton Research Institute ATTN: D. Campbell AL/PAP
 Edwards AFB, CA 93523
- NASA
 Langley Research Center
 Langley Station
 ATTN: G.B. Northam/MS 168
 Hampton, VA 23365
- 4 National Bureau of Standards
 ATTN: J. Hastie
 M. Jacox
 T. Kashiwagi
 H. Semerjian
 US Department of Commerce
 Washington, DC 20234
- 1 Aerojet Solid Propulsion Co. ATTN: P. Micheli Sacramento, GA 95813
- Applied Combustion Technology, Inc. ATTN: A.M. Varney
 P.O. Box 607885
 Orlando, FL 32860
- 1 Atlantic Research Corp. ATTN: M.K. King 5390 Cherokee Avenue Alexandria, VA 22314
- 1 Atlantic Research Corp.
 ATTN: R.H.W. Waesche
 7511 Wellington Road
 Gainesville, VA 22065
- 1 AVCO Everett Research
 Laboratory Division
 ATTN: D. Stickler
 2385 Revere Beach Parkway
 Everett, MA 02149

No. of Copies

Organization

- 1 Battelle Memorial Institute
 Tactical Technology Center
 ATTN: J. Huggins
 505 King Avenue
 Columbus, OH 43201
- Cohen Professional Services
 ATTN: N.S. Cohen
 141 Channing Street
 Redlands, CA 92373
- Exxon Research & Eng. Co. ATTN: A. Dean Route 22E Annandale, NJ 08801
- 1 Ford Aerospace and
 Communications Corp.
 DIVAD Division
 Div. Hq., Irvine
 ATTN: D. Williams
 Main Street & Ford Road
 Newport Beach, CA 92663
- General Applied Science
 Laboratories, Inc.
 Raynor Avenue
 Ronkonkama, NY 11779-6649
- 1 General Electric Ordnance
 Systems
 ATTN: J. Mandzy
 100 Plastics Avenue
 Pittsfield, MA 01203
- 2 General Motors Rsch Labs Physics Department ATTN: T. Sloan R. Teets Warren, MI 48090
- 2 Hercules, Inc.
 Allegheny Ballistics Lab.
 ATTN: W.B. Walkup
 E.A. Yount
 P.O. Box 210
 Rocket Center, WV 26726
- 1 Honeywell, Inc.
 Government and Aerospace
 Products
 ATTN: D.E. Broden/
 MS MN50-2000
 600 2nd Street NE
 Hopkins, MN 55343

No. of Copies

Organization

- Honeywell, Inc.
 ATTN: R.E. Tompkins
 MN38-3300
 10400 Yellow Circle Drive
 Minnetonka, MN 55343
- 1 IBM Corporation ATTN: A.C. Tam Research Division 5600 Cottle Road San Jose, CA 95193
- 1 IIT Research Institute ATTN: R.F. Remaly 10 West 35th Street Chicago, IL 60616
- Director
 Lawrence Livermore
 National Laboratory
 ATTN: C. Westbrook
 M. Costantino
 P.O. Box 808
 Livermore, CA 94550
- Lockheed Missiles & Space Co.
 ATTN: George Lo
 3251 Hanover Street
 Dept. 52-35/B204/2
 Palo Alto, CA 94304
- 1 Los Alamos National Lab ATTN: B. Nichols T7, MS-B284 P.O. Box 1663 Los Alamos, NM 87545
- National Science Foundation ATTN: A.B. Harvey Washington, DC 20550
- Olin Ordnance
 ATTN: V. McDonald, Library
 P.O. Box 222
 St. Marks, FL 32355-5222
- 1 Paul Gough Associates, Inc. ATTN: P.S. Gough 1048 South Street Portsmouth, NH 03801-5423

No. of

Copies Organization

- Princeton Combustion
 Research Laboratories, Inc.
 ATTN: M. Summerfield
 N.A. Messina
 475 US Highway One
 Monmouth Junction, NJ 08852
- Hughes Aircraft Company ATTN: T.E. Ward 8433 Fallbrook Avenue Canoga Park, CA 91303
- Rockwell International Corp.
 Rocketdyne Division
 ATTN: J.E. Flanagan/HB02
 6633 Canoga Avenue
 Canoga Park, CA 91304
- Sandia National Laboratories
 Division 8354
 ATTN: R. Cattolica
 S. Johnston
 P. Mattern
 D. Stephenson

Livermore, CA 94550

- Science Applications, Inc. ATTN: R.B. Edelman
 23146 Cumorah Crest
 Woodland Hills, CA 91364
- 3 SRI International
 ATTN: G. Smith
 D. Crosley
 D. Golden
 333 Ravenswood Avenue
 Menlo Park, CA 94025
- Stevens Institute of Tech.
 Davidson Laboratory
 ATTN: R. McAlevy, III
 Hoboken, NJ 07030
- 1 Thiokol Corporation
 Elkton Division
 ATTN: S.F. Palopoli
 P.O. Box 241
 Elkton, MD 21921
- Morton Thiokol, Inc.
 Huntsville Division
 ATTN: J. Deur
 Huntsville, AL 35807-7501

No. of Copies

Organization

- Thiokol Corporation
 Wasatch Division
 ATTN: S.J. Bennett
 P.O. Box 524
 Brigham City, UT 84302
- United Technologies Research Center ATTN: A.C. Eckbreth
 East Hartford, CT 06108
- United Technologies Corp.
 Chemical Systems Division
 ATTN: R.S. Brown
 T.D. Myers (2 copies)
 P.O. Box 49028
 San Jose, CA 95161-9028
- 1 Universal Propulsion Company ATTN: H.J. McSpadden Black Canyon Stage 1 Box 1140 Phoenix, AZ 85029
- Veritay Technology, Inc.
 ATTN: E.B. Fisher
 4845 Millersport Highway
 P.O. Box 305
 East Amherst, NY 14051-0305
- Brigham Young University
 Dept. of Chemical Engineering
 ATTN: M.W. Beckstead
 Provo, UT 84058
- California Institute of Tech.
 Jet Propulsion Laboratory
 ATTN: L. Strand/MS 512/102
 4800 Oak Grove Drive
 Pasadena, CA 91009
- 1 California Institute of Technology ATTN: F.E.C. Culick/ MC 301-46 204 Karman Lab. Pasadena, CA 91125
- University of California
 Los Alamos Scientific Lab.
 P.O. Box 1663, Mail Stop B216
 Los Alamos, NM 87545

No. of Copies

Organization

- University of California, Berkeley
 Chemistry Deparment
 ATTN: C. Bradley Moore
 Lewis Hall
 Berkeley, CA 94720
- University of California, San Diego
 ATTN: F.A. Williams
 AMES, B010
 La Jolla, CA 92093
- 2 University of California, Santa Barbara Quantum Institute ATTN: K. Schofield M. Steinberg Santa Barbara, CA 93106
- University of Colorado at Boulder
 Engineering Center
 ATTN: J. Daily
 Campus Box 427
 Boulder, CO 80309-0427
- 2 University of Southern
 California
 Dept. of Chemistry
 ATTN: S. Benson
 C. Wittig
 Los Angeles, CA 90007
- Case Western Reserve Univ.
 Div. of Aerospace Sciences
 ATTN: J. Tien
 Cleveland, OH 44135
- 1 Cornell University
 Department of Chemistry
 ATTN: T.A. Cool
 Baker Laboratory
 Ithaca, NY 14853
- 1 University of Delaware ATTN: T. Brill Chemistry Department Newark, DE 19711
- 1 University of Florida
 Dept. of Chemistry
 ATTN: J. Winefordner
 Gainesville, FL 32611

No. of

Copies Organization

- 3 Georgia Institute of
 Technology
 School of Aerospace
 Engineering
 ATTN: E. Price
 W.C. Strahle
 B.T. Zinn
- University of Illinois
 Dept. of Mech. Eng.
 ATTN: H. Krier
 144MEB, 1206 W. Green St.
 Urbana, IL 61801

Atlanta, GA 30332

- 1 Johns Hopkins University/APL
 Chemical Propulsion
 Information Agency
 ATTN: T.W. Christian
 Johns Hopkins Road
 Laurel, MD 20707
- University of Michigan
 Gas Dynamics Lab
 Aerospace Engineering Bldg.
 ATTN: G.M. Faeth
 Ann Arbor, MI 48109-2140
- 1 University of Minnesota Dept. of Mechanical Engineering ATTN: E. Fletcher Minneapolis, MN 55455
- 3 Pennsylvania State University
 Applied Research Laboratory
 ATTN: K.K. Kuo
 H. Palmer
 M. Micci
 University Park, PA 16802
- Pennsylvania State University
 Dept. of Mechanical Engineering
 ATTN: V. Yang
 University Park, PA 16802
- 1 Polytechnic Institute of NY
 Graduate Center
 ATTN: S. Lederman
 Route 110
 Farmingdale, NY 11735

No. of Copies

Organization

- Purdue University
 School of Aeronautics
 and Astronautics
 ATTN: J.R. Osborn
 Grissom Hall
 West Lafayette, IN 47906
- 1 Purdue University
 Department of Chemistry
 ATTN: E. Grant
 West Lafayette, IN 47906
- 2 Purdue University School of Mechanical Engineering ATTN: N.M. Laurendeau S.N.B. Murthy TSPC Chaffee Hall West Lafayette, IN 47906
- Rensselaer Polytechnic Inst.
 Dept. of Chemical Engineering ATTN: A. Fontijn
 Troy, NY 12181
- 1 Stanford University
 Dept. of Mechanical
 Engineering
 ATTN: R. Hanson
 Stanford, CA 94305
- 1 University of Texas
 Dept. of Chemistry
 ATTN: W. Gardiner
 Austin, TX 78712
- University of Utah
 Dept. of Chemical Engineering
 ATTN: G. Flandro
 Salt Lake City, UT 84112
- 1 Virginia Polytechnic
 Institute and
 State University
 ATTN: J.A. Schetz
 Blacksburg, VA 24061

No. of

Copies

Organization

1 Freedman Associates ATIN: E. Freedman 2411 Diana Road Baltimore, MD 21209-1525 INTENTIONALLY LEFT BLANK.

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts. BRL Report Number BRL-TR-3173 Date of Report NOVEMBER 1990 2. Date Report Received _____ 3. Does this report satisfy a need? (Comment on purpose related project, or other area of interest for which the report will be used.) 4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.) 5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided, or efficiencies achieved, etc? If so, please elaborate. 1 1 ** 67 General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.) " 1 5º 30 g -大きっているの<u>をする</u> Name **CURRENT** Organization **ADDRESS** Address City, State, Zip Code 7. If indicating a Change of Address or Address Correction, please provide the New or Correct Address in Block 6 above and the Old or Incorrect address below. Name OLD Organization **ADDRESS** Address City, State, Zip Code

(Remove this sheet, fold as indicated, staple or tape closed, and mail.)

Danamara an min Anny	FOLD HERE	11111	
DEPARTMENT OF THE ÅRMY Director U.S. Army Ballistic Research Laboratory ATTN: SLCBR-DD-T Aberdeen Proving Ground, MD 21(8 1-5066 OFFICIAL BUSINESS			NO POSTAGE NECESSARY F MALED IN THE LIMITED STATES
	BUSINESS REPLY MAIL FIRST CLASS PERMIT No 0001, APG, MD		
	POSTAGE WILL BE PAID BY ADURESSEE		
U A	Director I.S. Army Ballistic Research Laboratory ATTN: SLCBR-DD-T Aberdeen Proving Ground, MD 21005-9989	e e	
	FOLD HERE		
U A A	V.S. Army Ballistic Research Laboratory ATTN: SLCBR-DD-T Aberdeen Proving Ground, MD 21005-9989		•••

* ***

are the second of the second o